Decomposition of any natural number as sum of squares of rational numbers.

https://www.linkedin.com/feed/update/urn:li:activity:6747726162216185857
Prove that for all positive integers n there exist n distinct, positive rational numbers with sum of their squares equal to n.

Proposed by Daniyar Aubekerov

Solution by Arkady Alt, San Jose, California, USA.

Note that for $n=2$ it is true. Indeed, $\left(\frac{6}{5}\right)^{2}+\left(\frac{8}{5}\right)^{2}=2^{2}$. Consider now
for any $n \in \mathbb{N} \backslash\{1\}$ equation $(n-1)^{2} x^{2}+y^{2}=n^{2}$ relatively positive rational x, y.
We have $(n-1)^{2} x^{2}+y^{2}=n^{2} \Leftrightarrow \frac{(n-1) x}{n+y}=\frac{n-y}{(n-1) x} \Leftrightarrow$
$((n-1) x, n+y)=t(n-y,(n-1) x), t \in \mathbb{Q}_{+} \Leftrightarrow\left\{\begin{array}{c}(n-1) x=t(n-y) \\ n+y=t(n-1) x\end{array} \Leftrightarrow\right.$
$\left\{\begin{array}{l}(n-1) x+t y=t n \\ t(n-1) x-y=n\end{array} \Leftrightarrow\left\{\begin{array}{c}x=x(t):=\frac{2 n t}{(n-1)\left(t^{2}+1\right)} \\ y=y(t):=\frac{n\left(t^{2}-1\right)}{t^{2}+1}\end{array}\right.\right.$, for any rational
$t>1$ (to provide $y>0$).
Note that $x(t) \neq y(t)$ for any rational $t>1$ because $x(t)=y(t) \Leftrightarrow t^{2}-1=\frac{2 t}{n-1}=0 \Leftrightarrow$ $t-\frac{1}{n-1}=\frac{\sqrt{n^{2}-2 n+2}}{n-1}$ where $\sqrt{n^{2}-2 n+2}$ is irrational.
For any $n \geq 3$ assuming $r_{1}^{2}+r_{2}^{2}+\ldots+r_{n-1}^{2}=(n-1)^{2}$ for some distinct, positive rational $r_{1}, r_{2}, \ldots, r_{n-1}$ we obtain $n^{2}=(n-1)^{2} x^{2}(t)+y^{2}(t)=$ $\sum_{k=1}^{n-1} x^{2}(t) r_{k}^{2}+y^{2}(t)$. Let t_{k} be real positive root of equation $x^{2}(t) r_{k}^{2}=y^{2}(t), k=1,2, \ldots, n-1$ (quadratic equation $x^{2}(t) r_{k}^{2}=y^{2}(t) \Leftrightarrow$ $t^{2}-\frac{2 t r_{k}}{n-1}-1=0$ always has only one positive real root).
Then for any positive rational $t>1$ such that $t \notin\left\{t_{1}, t_{2}, \ldots, t_{n-1}\right\}$ we have $r_{k} x(t) \neq y(t), k=1,2, \ldots, n-1$ and, therefore, $r_{1} x(t), r_{2} x(t), \ldots, r_{n-1} x(t), y(t)$ be distinct, positive rational numbers with sum of their squares equal to n.
Thus, by Math Induction proved stement of the problem.

