Decomposition of any natural number as sum of squares of rational numbers. https://www.linkedin.com/feed/update/urn:li:activity:6747726162216185857 Prove that for all positive integers n there exist n distinct, positive rational numbers with sum of their squares equal to n.

Proposed by Daniyar Aubekerov

Solution by Arkady Alt, San Jose, California, USA.

Note that for n = 2 it is true. Indeed, $\left(\frac{6}{5}\right)^2 + \left(\frac{8}{5}\right)^2 = 2^2$. Consider now for any $n \in \mathbb{N} \setminus \{1\}$ equation $(n-1)^2 x^2 + y^2 = n^2$ relatively positive rational x, y. We have $(n-1)^2 x^2 + y^2 = n^2 \Leftrightarrow \frac{(n-1)x}{n+y} = \frac{n-y}{(n-1)x} \Leftrightarrow$ $((n-1)x, n+y) = t(n-y, (n-1)x), t \in \mathbb{Q}_+ \Leftrightarrow \begin{cases} (n-1)x = t(n-y)\\ n+y = t(n-1)x \end{cases} \Leftrightarrow \begin{cases} x = x(t) \coloneqq \frac{2nt}{(n-1)(t^2+1)}\\ y = y(t) \coloneqq \frac{n(t^2-1)}{t^2+1} \end{cases}$, for any rational t > 1 (to provide y > 0).

Note that $x(t) \neq y(t)$ for any rational t > 1 because $x(t) = y(t) \Leftrightarrow t^2 - 1 = \frac{2t}{n-1} = 0 \Leftrightarrow t - \frac{1}{n-1} = \frac{\sqrt{n^2 - 2n + 2}}{n-1}$ where $\sqrt{n^2 - 2n + 2}$ is irrational. For any $n \ge 3$ assuming $r_1^2 + r_2^2 + \ldots + r_{n-1}^2 = (n-1)^2$ for some distinct, positive rational $r_1, r_2, \ldots, r_{n-1}$ we obtain $n^2 = (n-1)^2 x^2(t) + y^2(t) = \sum_{k=1}^{n-1} x^2(t)r_k^2 + y^2(t)$. Let t_k be real positive root of equation $x^2(t)r_k^2 = y^2(t)$, $k = 1, 2, \ldots, n-1$ (quadratic equation $x^2(t)r_k^2 = y^2(t) \Leftrightarrow t^2 - \frac{2tr_k}{n-1} - 1 = 0$ always has only one positive real root). Then for any positive rational t > 1 such that $t \notin \{t_1, t_2, \ldots, t_{n-1}\}$ we have $r_k x(t) \neq y(t), k = 1, 2, \ldots, n-1$ and, therefore, $r_1 x(t), r_2 x(t), \ldots, r_{n-1} x(t), y(t)$ be distinct, positive rational numbers with sum of their squares equal to n.

Thus, by Math Induction proved stement of the problem.